Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers

نویسندگان

  • Yeong Hwan Ko
  • Myung Sub Kim
  • Jae Su Yu
چکیده

We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleation surface as well as the film with better electrical conductivity, thus leading to a more uniform high-density ZnO NRAs with an improved crystal quality during the electrochemical deposition process. For ZnO NRAs grown on the seed layer containing MWCNTs (2 wt.%), the photoluminescence peak intensity of the near-band-edge emission at a wavelength of approximately 375 nm was enhanced by 2.8 times compared with that of the ZnO nanorods grown without the seed layer due to the high crystallinity of ZnO NRAs and the surface plasmon-meditated emission enhancement by MWCNTs. The effect of the MWCNT-composed seed layer on the surface wettability was also investigated.PACS: 81.07.-b; 81.16.-c; 81.07.Pr; 61.48.De.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Cr dopant on the microstructure and optical properties of ZnO nanorods

One-dimensional (1D) undoped and Cr doped ZnO nanorods with average length of 1 µm and diameter of 80 nm were synthesized using hydrothermal method where a fast growth of ZnO nanorods on the seed layer was observed. Afterwards, the effects of Cr dopant on structural, surface morphology and optical properties of nanorods were studied using X-ray diffraction (XRD), scanning electron microscopy (S...

متن کامل

Structural, Optical and Ultra-Violet Photodetection Properties of ZnO Nanorods with Various Aspect Ratios

ZnO nanorods with various lengths were synthesized by a two-stage route (by changing the time of growth between 0-240 min) and were characterized using XRD, SEM, UV–Vis and PL techniques. The SEM and XRD results confirmed a fast growth of (0 0 2) plane in the preferential longitudinal orientation, in contrast to lateral growth and therefore, by increasing the time of hydrothermal growth, nanoro...

متن کامل

SYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE

The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed...

متن کامل

Controllable Template-Assisted Electrodeposition of Single- and Multi-Walled Nanotube Arrays for Electrochemical Energy Storage

Here we explored a novel ZnO nanorod array template-assisted electrodeposition route to synthesize large-scale single-walled polypyrrole (PPy) nanotube arrays (NTAs) and multi-walled MnO(2)/PPy/MnO(2) NTAs. The structures of nanotubes, such as external and inner diameters, wall thicknesses, and lengths, can be well controlled by adjusting the diameters and lengths of ZnO nanorods and deposition...

متن کامل

Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine.

We controlled the morphologies of zinc oxide (ZnO) nanostructures on single-walled carbon nanotube electrodes by an electrochemical deposition method and investigated the dependence of the electrocatalytic characteristics toward hydrazine on the different morphologies. ZnO nanorods provided high electrocatalytic activity with unique electrochemical behaviours, associated with the H(+) ion gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012